Home
Class 12
MATHS
IF x=1+logabc,y=1+logbca,z=1+logcab, pro...

IF `x=1+log_abc,y=1+log_bca,z=1+log_cab`, prove that xyz=xy+yz+zx.

A

0

B

1

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

We can write log"" x/y = log (x.y^(-1 )) Can you prove that log"" x/y = log x - logy using product and power rules.

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

IF a^x=b,b^y=c,c^z=a,x=log_b a^(k1),y=log_c b^(k2),z=log_a c^(k3) , find the minimum value of 3k_1+6k_2+12k_3 .

Find x if 2log5+1/2 log9 - log3 = logx

If y = a cos (log x) + b sin (log x) , show that x^(2) y_(2) + xy_(1) + y = 0 .

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc