Home
Class 12
MATHS
The value of a^((logb(logb N))/(logb a))...

The value of `a^((log_b(log_b N))/(log_b a)),` is

A

`log_aN`

B

`log_bN`

C

`log_Na`

D

`log_Nb`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

The value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,lo_(z)y,1)|=

The value of (log_5 9*log_7 5*log_3 7)/(log_3 sqrt(6))+1/(log_4 sqrt(6)) is co-prime with

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

log_(3)2,log_(6)2,log_(12)2 are in :

The real part of log log i is

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )