Home
Class 12
MATHS
If log(10)5=a and log(10)3=b,then...

If `log_(10)5=a` and `log_(10)3=b`,then

A

`log_(10)8=3(1-a)`

B

`log_(40)15=((a+b))/((3-2a))`

C

`log_(243)32=((1-a)/b)`

D

All of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_(10)x + log_(10) y ge 2 , then the smallest value of x + y is :

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

The lengths of the sides of a traingle are log_(10)12,log_(10)75andlog_(10)n , where n in N . If a and b are the least ad greatest values of n respectively. The value of b-a is divisible by

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

The value of e^(log_(10) tan 1^(o) +…. + log_(10) tan 89^(o) is

Let S denotes the antilog of 0.5 to the base 256 and K denotes the number of digits in 6^(10) (given log_(10)2=0.301 , log_(10)3=0.477 ) and G denotes the number of positive integers, which have the characteristic 2, when the base of logarithm is 3. The value of SKG is

Let S denotes the antilog of 0.5 to the base 256 and K denotes the number of digits in 6^(10) (given log_(10)2=0.301 , log_(10)3=0.477 ) and G denotes the number of positive integers, which have the characteristic 2, when the base of logarithm is 3. The value of SKG is

If x = log_(5) (1000) and y=log_(7) (2058) , then