Home
Class 12
MATHS
Find the least value of log2x-logx(0.125...

Find the least value of` log_2x-log_x(0.125)`for `xgt1` .

Text Solution

Verified by Experts

The correct Answer is:
`2 sqrt3`
Promotional Banner

Similar Questions

Explore conceptually related problems

For x > 1 , the minimum value of 2 log_10(x)-log_x(0.01) is

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

The maximum value of (log_(e)x)/(x) , if x gt0

Find the value of x satisfying log_a{1+log_b{1+log_c(1+log_px)}}=0 .

Find all real numbers x which satisty the equation. 2log_2log_2x+log_(1/2)log_2(2sqrt2x)=1

In the equality (log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0 holds true in (a,b), where a,b in N. Find the value of ab (a+b).

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If x_1 and x_2 (x_2gtx_1) are the integral solutions of the equation (log_5x)^2+log_(5x)(5/x)=1 , , the value of |x_2-4x_1| is