Home
Class 12
MATHS
Solve log4(log3x)+log(1//4)(log(1//3)y)=...

Solve `log_4(log_3x)+log_(1//4)(log_(1//3)y)=0` and `x^2+y^2=17/4`.

Text Solution

Verified by Experts

The correct Answer is:
x=2 or `1/2, y=1/2`or2
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

lim_(x->1) (log_3 3x)^(log_x 3)=

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if I. x gt 1 .

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if II. 0ltxlt1 .

Solve the following inequation: log_(1//3)xltlog_(1//2)x

Solve the equation log_(3)(5+4log_(3)(x-1))=2

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :