Home
Class 12
MATHS
Solve : (3)/(2)log(4)(x+2)^(2)+3=log(4)(...

Solve : `(3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=2 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Solve the following equations. (iii) 2.x^(log_(4)3)+3^(log_4x)=27

The equation : x^(3//4 (log_(2) x)_(4)^(2) + log_(2) x - 5//4) = sqrt(2) has :

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2