Home
Class 12
MATHS
Find the number of real values of x sati...

Find the number of real values of x satisfying the equation.
`log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))`

Text Solution

Verified by Experts

The correct Answer is:
x=0
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

The values of x satisfying 2log_((1)/(4))(x+5)gt(9)/(4)log_((1)/(3sqrt(3)))(9)+log_(sqrt(x+5))(2)

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Find all real numbers x which satisty the equation. 2log_2log_2x+log_(1/2)log_2(2sqrt2x)=1

The equation : x^(3//4 (log_(2) x)_(4)^(2) + log_(2) x - 5//4) = sqrt(2) has :