Home
Class 12
MATHS
The values of x satisfying 2log((1)/(4))...

The values of x satisfying `2log_((1)/(4))(x+5)gt(9)/(4)log_((1)/(3sqrt(3)))(9)+log_(sqrt(x+5))(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x in(-5,4)cup(-3,-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying log_a{1+log_b{1+log_c(1+log_px)}}=0 .

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of 4^(5log_(4sqrt(2)) (3-sqrt(6))-6log_(8)(sqrt(3)-sqrt(2))) is

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =

The value of (log_5 9*log_7 5*log_3 7)/(log_3 sqrt(6))+1/(log_4 sqrt(6)) is co-prime with

The number of solutions of : log_(4) (x - 1)= log_(2) (x - 3) is :

If x satisfies log_2(9^(x-1)+7)=2+log_2(3^(x-1)+1) , then

If x_1,x_2 & x_3 are the three real solutions of the equation x^(log_10^2 x+log_10 x^3+3)=2/((1/(sqrt(x+1)-1))-(1/(sqrt(x+1)+1))), where x_1 > x_2 > x_3, then these are in