Home
Class 12
MATHS
In the equality (log2x)^4-(log(1//2)"x...

In the equality
`(log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0`
holds true in (a,b), where a,b`in` N. Find the value of ab (a+b).

Text Solution

Verified by Experts

The correct Answer is:
3456
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

Find the least value of log_2x-log_x(0.125) for xgt1 .

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

The equation : x^(3//4 (log_(2) x)_(4)^(2) + log_(2) x - 5//4) = sqrt(2) has :

There exists a positive number k such that log_2x+ log_4x+ log_8x= log_kx , for all positive real no x. If k= a^(1/b) where (a,b) epsilon N, the smallest possible value of (a+b)= (c)

Solve the equation log_(2)(3-x)-log_(2)(("sin"(3pi)/4)/(5-x))=1/2+log_(2)(x+7)

Solve the following inequation . (xii) (log_2x)^2+3log_2xge5/2log_(4sqrt2)16

If x^((log_2 x)^(2)-6 log_2 x+11)=64 then x is equal to

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

Solve the inequation 4^(x+1)-16^(x)lt2log_(4)8