Home
Class 12
MATHS
Find the value of x satisfying the equat...

Find the value of x satisfying the equation, `sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2`

Text Solution

Verified by Experts

The correct Answer is:
`x in (1,3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

lim_(x->1) (log_3 3x)^(log_x 3)=

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

Solve the equation log_(3)(5+4log_(3)(x-1))=2

The values of x satisfying 2log_((1)/(4))(x+5)gt(9)/(4)log_((1)/(3sqrt(3)))(9)+log_(sqrt(x+5))(2)

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Solve the equation x^(log_(x)(x+3)^(2))=16 .