Home
Class 12
MATHS
If 3^x=4^(x-1), then x equals...

If `3^x=4^(x-1)`, then x equals

A

`(2log_(3)2)/(2log_(3)2-1)`

B

`2/(2-log_(2)3)`

C

`1/(1-log_(4)3)`

D

`(2log_(2)3)/(2log_(2)3-1)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

If "tan"^(-1) (sqrt(1+x^2)-1)/x=4 , then x equals :

If tan^(-1)(sqrt(1+x^(2))-1)/(x)=4 then x equals

If 3 "tan^(-1)x+cot^(-1)x-=pi then x equal to

If int (sqrt(1+3sqrt(x)))/(x^(2//3))dx=2f(x)^(3//2)+c , then f(x)equals :

If the determinant |{:(x , 1 , 3) , ( 0 , 0 , 1) , (1 , x , 4):}|=0 , then x is equal to

If 1,(1)/(2) log_(3)(3^(1-x)+2),log_(3)(4.3^(x)-1) are in A.P., then x equals :

If f(x)=log((1+x)/(1-x))andg(x)=(3x+x^(3))/(1+3x^(2)) , then f(g(x)) is equal to :

If int (1)/(4-3 cos^(2) x+5sin^(2)x)dx=(1)/(3)tan^(-1)(f(x))+c ,then f(x)equals :

If sin^(-1) (x - (x^(2))/(2 ) + (x^(3))/(4)….)+cos^(-1)(x^2-x^4/2+x^6/4-....)=pi/2 for 0 lt |x| lt sqrt(2) then x equals :