Home
Class 12
MATHS
If A=[(0,-tan (alpha/2)),(tan (alpha/2),...

If `A=[(0,-tan (alpha/2)),(tan (alpha/2),0)] and I` is `2 xx 2` unit matrix, then `(I-A)[(cos alpha,-sin alpha),(sin alpha, cos alpha)]` is

Text Solution

Verified by Experts

Since, `I=[(1,0),(0,1)]` and given `A = [(0,-tan(alpha//2)),(tan(alpha//2),0)]`
`therefore" " 1+A = [(1,-tan(alpha//2)),(tan(alpha//2),1)]`
`RHS = (I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]`
`=[(1,tan(alpha//2)),(-tan(alpha//2),1)][(cosalpha,-sinalpha),(sinalpha,cosalpha)]`
`=[(1,tan(alpha//2)),(-tan(alpha//2),1)]`
`[((1-tan^(2)alpha//2)/(1tan^(2)(alpha//2)),(-2tan(alpha//2))/(1+tan^(2)(alpha//2))),((2tan(alpha//2))/(1+tan^(2)(alpha//2)),(1-tan^(2)(alpha//2))/(1+tan^(2)(alpha//2)))]`
`RHS = [(1,lambda),(-lambda,1)][((1-lambda^(2))/(1+lambda^(2)),(-2lambda)/(1+lambda^(2))),((2lambda)/(1+lambda^(2)),(1-lambda^(2))/(1+lambda^(2)))]`
`[((1-lambda^(2)+2lambda^(2))/(1+lambda^(2))(-2lambda+lambda(1-lambda^(2)))/(1+lambda^(2))),((-lambda(1-lambda)^(2)+2lambda)/(l+lambda^(2))(2lambda^(2)+1-lambda^(2))/(1+lambda^(2)))]`
`[((1+lambda^(2))/(1+lambda^(2))( lambda(1+lambda)^(2))/(1+lambda^(2))),((lambda(1+lambda^(2)))/(1+lambda^(2))(1+lambda^(2))/(1+lambda^(2)))]=[(1,-lambda),(lambda,1)]`
`=[(1,-tan(alpha//2)),(-tan(alpha//2),1)][therefore lambda =(alpha//2)]`
`=I+A`
`=LHS`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] , then verify that A'A=I

Show that sqrt((1+cos alpha)/(1-cos alpha))=cosec alpha + cot alpha

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If A=[(cos alpha, -sin alpha),(sin alpha, cos alpha)], and A+A'=I , then the value of alpha is

If A=[(sin alpha, cos alpha),(-cos alpha, sin alpha)] , then verify that A'A=I

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

Find the inverse of each of the matrices (if it exists ) {:[( 1,0,0),( 0 ,cos alpha , sin alpha ),( 0, sin alpha , -cos alpha ) ]:}

The expression tan ^(2) alpha+cot ^(2) alpha is

Evalute : int (cos 2 x - cos2 alpha)/(cos x - cos alpha)dx .