Home
Class 12
MATHS
show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A...

show that `[(1,1,3),(5,2,6),(-2,-1,-3)]=A` is nilpotent matrix of order 3.

Text Solution

Verified by Experts

Let `A=[(1,1,3),(5,2,6),(-2,-1,-3)]`
`therefore A^(2)=A.A=[(1,1,3),(5,2,6),(-2,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(1+5-6,1+2-3,3+6-9),(5+10-12,5+4-6,15+12-18),(-2-5+6,-2-2+3,-6-6+9)]`
`=[(0,0,0),(3,3,9),(-1,-1,-3)]`
`thereforeA^(3)=A^(2).=[(0,0,0),(3,3,9),(-1,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(0+0+0,0+0+0,0+0+0),(3+15-18,3+6-9,9+18-27),(-1-5+16,-1-2+3,-3-6+9)]=[(0,0,0),(0,0,0),(0,0,0)]=0`
`therefore" " A^(3)=Oi.e.,A^(k)=O`
Here `k=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the matrix A=[(1, -1, 5),(-1,2,1),(5,1,3)] is a symmetric matrix.

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

find the inverse of the matrix [(1,2,5),(2,3,1),(-1,1,1)], using elementary row operations.

show that the matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is involutory.

Express the matrix B=[(2,-2,-4),(-1,3,4),(1,-2,-3)] as the sum of a symmetric and a skew symmetric matrix.

For what value of k the matrix [(2k+3,4,5),(-4,0,-6),(-5,6,-2k-3)] is a skew symmetric matrix ?

Show that (-1,2,1),(1,-2,5),(4,-7,8) and(2,-3,4) are the vertices of parallelogram.

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

The inverse of the matrix [(2,5,0),(0,1,1),(-1,0,3)] is