Home
Class 12
MATHS
If [(0,2beta,gamma),(alpha,beta,-gamma),...

If `[(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)]` is orthogonal, then find the value of `2alpha^(2)+6beta^(2)+3gamma^(2).`

Text Solution

Verified by Experts

Let `A = [(0, 2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)],then A' [(0,alpha,alpha),(2beta,beta,-beta),(gamma,gamma,gamma)]`
since A is orthogonal.
`therefore" " A A'=I`
`rArr [(o,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta, gamma)][(0,gamma,gamma),(2beta,beta,-beta),(gamma,-gamma,gamma)]=[(1,0,0),(0,1,0),(0,0,1)]`
Equating the corresponding elements, we get
`4beta^(2)+gamma^(2)=1`
`2beta^(2)-gamma^(2)=0`
and `alpha^(2)+beta^(2)+gamma^(2)=1`
From Eqs. (i) and (ii), we get ltbegt `beta^(2)=(1)/(2) and gamma^(2)=(1)/(3)`
From Eq. (iii)
`alpha^(2)=1-beta^(2)-gamma^(2)=-(1)/(6)-(1)/(3)=(1)/(2)`
Hence, `2alpha^(2)+6beta^(2)+3gamma^(2)=2xx(1)/(2)+6xx(1)/(6)+3xx(1)/(3)=3`
Aliter
the rows of matrix A are unit orthogonal vectors
`vecR_(1).vecR_(2)=0 rArr 2beta^(2)-gamma^(2)=0 rArr 2beta^(2)=gamma^(2)`
`vecR_(2).vecR_(3)=0 rArr alpha^(2)-beta^(2)-gamma^(2)=0 rArr beta^(2) + gamma^(2) = alpha^(2)` and `vecR_(1).vecR_(3)=1 rArr alpha^(2)+beta^(2)+gamma^(2)=1`
from Eqs. (i),(ii) and (iii), we get `alpha^(2)=(1)/(2),beta^(2)=(1)/(6) and gamma^(2)=(1)/(3)`
`therefore 2alpha^(2)+6beta^(2)+3gamma^(2)=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+beta+gamma=2 pi, then

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

If alpha,beta,gammain(0,pi/2) , then (sin(alpha+beta+gamma))/(sinalpha+sinbeta+singamma) is :

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2) is

If A=[(alpha, beta),(gamma, -alpha)] is such that A^(2)=I , then

If alpha, beta, gamma are the angle made by a vector with the coordinate axes, then sin^(2) alpha + sin^(2) beta + sin^(2) gamma =

If alpha, beta, and gamma are the zeros of 2x^(3) - 4x^(2) + 6x +9 , find value of alpha ^(-1) + beta^(-1) + gamma^(-1)

If alpha,beta and gamma are roots of x^(3) -2x+1=0,then the value of Sigma((1)/(alpha+beta-gamma)) is

If alpha , beta , gamma are the roots of the equation x^(3) + 4x + 2 = 0 ,then alpha^(3) + beta^(3) + gamma^(3) =