Home
Class 12
MATHS
Verify that the matrix (1)/sqrt3[(1,1+i)...

Verify that the matrix `(1)/sqrt3[(1,1+i),(1-i,-1)]` is unitary, where `i=sqrt-1`

Text Solution

Verified by Experts

Let `A=(1)/sqrt3[(1,1+i),(1-i,-1)], "then"" "A^(theta)=(barA')=(1)/sqrt3[(1,1+i),(1-i,-1)]`
` therefore" "A"A^(theta)=(1)/sqrt3[(1,1+i),(1-i,-1)] xx(1)/sqrt3[(1,1+i),(1-i,-1)]`
`=(1)/(3)[(3,0),(0,3)]=[(1,0),(0,1)]=I`
Hence , A is unitary matrix.
Promotional Banner

Similar Questions

Explore conceptually related problems

if matrix A=(1)/sqrt2[(1,i),(-i,a)], i=sqrt-1 is unitary matrix, a is equal to

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=o where i=sqrt(-1) , the value of |alpha-beta|^(2) is

The amplitude of (1+sqrt(3i))/(sqrt(3)+i) is

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

If the multicative inverse of a comlex number is (sqrt3+4i)/19, where i=sqrt-1, find the complex number.

If ((1+i sqrt(3))/(1-i sqrt(3)))^(n) is an integer, then n=

Find the conjugate of sqrt(3i)-1