Home
Class 12
MATHS
If omega!=1 is a complex cube root of un...

If `omega!=1` is a complex cube root of unity, then prove that `[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}]`is singular

Text Solution

Verified by Experts

Let `A=[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(17)),(omega^(17),omega^(18),2+2omega^(2017)+omega^(2018)):}]`
` therefore" " omega^(3)=1rArr omega^(2017)=omega`
and `omega^(2018)=omega^(2)` then
`[(1+2omega+omega^(2),omega^(2),1),(1,1+omega^(2)+2omega,omega),(omega,omega^(2),2+omega+2omega^(2))]`
`=[(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]" " [therefore1+omega+omega^(2)=0]`
Now, `|A|= [(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]= omega[(omega,omega,1),(1,1,omega),(omega,omega,-omega)]=0 thus, `|A|=0.` Hence, A is singular matrix.
Promotional Banner

Similar Questions

Explore conceptually related problems

If w is a complex cube-root of unity then,

If omega is a complex cube root of unity , then the value of omega^(99) + omega^(100) + omega^(101) is

If omega is a complex cube root of unity , then the matrix A = [(1,omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a :

If w is a complex cube roots of unity, then arg (i w)+arg (i w^(2))=

If omega is a non real cube root of unity then (a+b)(a+b omega)(a+b omega^(2)) is

If omega is a complex cube root of unity then a root of the equation |[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]|=0 is

If omega is an imaginary cube root of unity ,then the value of [{:(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2)):}] is

If omega is an imaginary cube root of unity, then the value of (1)/(1+2omega)+(1)/(2+omega)-(1)/(1+omega) is :

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =