Home
Class 12
MATHS
find the real value of x for which the m...

find the real value of x for which the matrix `=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]` is non-singular.

Text Solution

Verified by Experts

Let `A=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]`
`therefore|A|=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]`
Applying `C_(1)rarr C_(1)+C_(2)+C_(3),` then
`therefore|A|=[(x+9,3,5),(x+9,x+3,5),(x+9,3,x+5)]`
Applying `R_(2)rarrR_(2)-R_(1) and R_(3)rarrR_(3)-R_(1),` then
`|A|=|(x+9,3,5),(0,x,0),(0,0,x)|=x^(2)(x+9)`
`therefore` A is non-singular.
`therefore" " |A|!=0 rArr x^(2)(x+9)!=0 `
`therefore" " x!=0,-9`
Hence,` x in R - {0,-9}.`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x for which the matrix |(-x,x,2),(2,x,-x),(x,-2,-x)| will be non-singular, are

The number of values of x for which the matrix A=[(3-x,2,2),(2,4-x,1),(-2,-4,-1-x)] is singular, is

Find the value of x for which |(2,3),(4,5)|=|(x,3),(2x,5)|

find the value of x for which |(3,x),(x,1)|=|(3,2),(4,1)|

Find the value of x for which |(3,x),(x,1)| = |(3,2),(4,1)|

Find the value of x for which |{:(,3,x),(,x,1):}|=|{:(,3,2),(,4,1):}|

find the range of values of t for which 2sint=(1-2x+5x^2)/(3x^2-2x-1)

Find the value of x for which: |{:(3,x),(x,1):}| = |{:(3,2),(4,1):}|

For what value of x is the matrix {:[(2x,4),(x+2,3):}] singular.