Home
Class 12
MATHS
If A=[(k,l),(m,n)] and kn!=lm, show that...

If `A=[(k,l),(m,n)]` and `kn!=lm,` show that `A^(2)-(k+n)A+(kn-lm)I=0.` Hence, find `A^(-1)`

Text Solution

Verified by Experts

We, have, `A[(k,l),(m,n)]`, then `|A|=|(k,l),(m,n)|`
`=kn-ml!=0`
`therefore" " A^(-1) exists.`
Now, `A^(2)=A.A=[(k,l),(m,n)][(k,l)(m,n)=[(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]`
`therefore " " A^(2)-(k+n)A+(kn-lm)I`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]-[(k-n)[(k,l),(m,n)]+(kn-lm)[(1,0),(0,1)]`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))][(k^(2)+nk,kl+nl),(km+nm,kn+n^(2))] +[(kn-lm,0),(0,kn-lm)]`
`[(k^(2)+lm-K^(2)-nk+kn-lm,kl+ln-kl-ln),(mk+nm-km-nm,ml+n^(2)-kn-n^(2)+kn-lm)]`
`[(0,0),(0,0)]=O`
`AsA^(2)-(k+n)A+(kn-lm)I=O`
`rArr" " (kn-lm)I=(k+n)A-A^(2)`
`rArr" " (kn-lm)IA^(-1)=(k+n)A-A^(2))A^(-1)`
`rArr" " (kn-lm)A^(-1)=(k+n)A A^(-1)-A(A A^(-1))`
`=(k+n)I-AI`
`=(k+n)I-A`
`=(k+n)[(1,0),(0,1)]-[(k,l),(m,n)]`
`=[(k+n,0),(0,k+n)]-[(k,l),(m,n)]`
` rArr " " (kn-lm)A^(-1)=[(n,-1),(-m,k)]`
Hence `A^(-1)=(1)/((kn-lm))[(n,-1),(-m,k)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I =O.Hence find A^(-1)

If A=[[1,0],[-1,7]] and A^2-8 A+k I=0 , then k=

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

If A=[[3,-2],[1,2]] and A^2+k A+8 I=0 , then k=

Let A=[(0,1),(0,0) ] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

if A =[(2,-2),(-2,2)]," then " A^(n)=2^(k)A , where k=

If m and n are the roots of the quadratic equations x^(2) - 3x+1 =0 , then find the value of (m)/( n) + ( n)/(m)

If m, n are the roots of the equations x^(2) -2x+ 3 =0 . Find the value of (1)/(m^(2)) +(1)/( n^(2))

If 'm' and 'n' are the roots of the equation x^(2) - 6x +2=0 , find the value of m^(3)n^(2)+n^(3)m^(2) :

If m and n are the roots of the equations 2x^(2)- 4x + 1=0 Find the value of (m+n) ^(2) +4mn.