Home
Class 12
MATHS
For the matrix A=[[3, 2],[ 1, 1]] , find...

For the matrix `A=[[3, 2],[ 1, 1]]` , find the numbers `a` and `b` such that `A^2+a A+b I=O` . Hence, find `A^(-1)` .

Text Solution

Verified by Experts

we have, `A=[(3,1),(2,0)]` then `|A|=|(3,1),(2,1)|=3-2=1!=0`
`therefore" " A^(-1)`. Exists.
Now `A^(2)=A.A=[(3,1),(2,1)][(3,1),(2,1)]=[(11,4),(8,3)]`
`rArr" " [(11,4),(8,3)]+a[(3,1),(2,1)]+b[(1,0),(0,1)]=[(0,0),(0,0)]`
`rArr" " [(11+3a+b,4+a),(8+2a,3+a+b)]+[(0,0),(0,0)]`
Equating the corresponding elements, we get
`11a+3a+b=0`
`4+a=0`
` 3+a+b=0`
from Eqs. (ii) and (iv), we get `a=-4` and `b=1`
`therefore" " |a|+|b|=|-4|+|1|=4+1=5`
As`" " A^(2)+aA+bI=O`
` rArr " " A^(2)-4A+I+O rArr I=4A-A^(2)`
`rArr " " IA^(-1) = 4(A A^(-1))-A(A A^(-1))`
`=4I-AI=4I-A`
`= 4[(1,0),(0,1)]-[(3,1),(2,1)]=[(4,0),(0,4)]-[(3,1),(2,1)]`
`therefore " " A(-1)=[(1,-1),(-2,3)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrix A={:[( 3,2),( -1,2) ]:} . Find the numbers a and b such that A^(2) +aA+bI =O.

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I =O.Hence find A^(-1)

If A is an invertible matrix of order 2 xx 3 such that |A| = 5 then find |A^(-1)| .

Find the adjoint of the matrix A=[(-1,-2,-2), (2, 1,-2) ,(2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

Solve the following equations by matrix method. If A = [(2,-1,1),(-1,2,-1),(1,-1,2)] verify that A^(3) - 6A^(2) + 9A = 4 I = 0 and hence, find A^(-1) .

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

Find the adjoint of the matrix [(1,2),(3,4)]

Let A={1,2} and B={3,4}. Find the number of relations from A to B.