Home
Class 12
MATHS
let A={a(ij)}(3xx3) such that a(ij)={3 ,...

let `A={a_(ij)}_(3xx3)` such that `a_(ij)={3 , i=j and 0,i!=j}`. then `{det(adj(adjA))/5}` equals: (where {.} represents fractional part)

A

`(1)/(5)`

B

`(2)/(7)`

C

`(3)/(7)`

D

`(4)/(7)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A = [a_(ij)] _(2xx2) where a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} then A^(2) is equal to :

If in a square matrix A=(a_(i j)) we have a_(ji)=a_(i j) for all i , j then A is

For 3xx3 matrix A , if |A | = 4 , then |adj A | equals :

If A= (a_(ij) ) is a scalar matrix of order nxx n such that a_(ii)=k for all i, then trace of A is equal to

If A is a 3xx3 non -singular matrix , then det . [ adj .A] is equal to :

If A (adj . A ) = 81 , for a 3xx3 matrix A , then det . A is equal to :

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .