Home
Class 12
MATHS
If A(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]...

If `A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0)= [[-4,-4,-4],[1,0,1],[4,4,3]]` then find `A_0-B_O`

A

unique solution

B

infinite solution

C

finitrly many solution

D

no solution

Text Solution

Verified by Experts

The correct Answer is:
D

`because A_(0) = [[2,-2,-4],[-1,3,4],[1,-2,-3]] rArr abs(A_(0)) = 0`
and abj `B_(0) = [[-4,1,4],[-3,0,4],[-3,1,-3]]^(T) = [[-4,-3,-3],[1,0,1],[4,4,3]]=B_(0) `
`because B_(n) = adj (B_(n-1)), n in N `
`therefore B_(1) = adj (B_(0) )=B_(0)`
`rArr B_(2) = adj (B_(1)) = adj (B_(0)) = B_(0),`
`B_(3) = B_(0) , B_(4) = B_(0) , ...`
`therefore B_(n) = B_(0) AA n in N`
`because abs(A_(0)) = 0`
`rArr A_(0)^(-1)` is not possible
Hence, System of equation `A_(0) X = B_(0)` has no Sol.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0) [[-4,-4,-4],[1,0,1],[4,4,3]] then find A_0 +B_0

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A= [[-1 , 2 , 4 ],[ 3 , 1 , 0],[ -2 , 4 , 2 ]] and B= [[-2 , 4 , 2],[6 , 2 , 0],[-2 , 4 , 8 ]] then B is given by

If 2 A+3 B=[[2,-1,4],[3,2,5]] and A+2 B=[[5,0,3],[1,6,2]] then B =

If A= [[1 ,-2, 2],[0, 2, -3],[3 ,-2, 4]] , then A . adj A=

If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]] then

If A= [[0,3],[-3,0]] and B=[[0,4],[-4,0]] then A+B is a

If A= [(1,1,-1),(2,0,2),(3,-1,2)],B=[(1,3),(0,2),(-1,4)] and C = [(1,2,3,-4),(2,0,-2,1)] then find A(BC) and (AB) C. Show that A(BC) =(AB) C.