Home
Class 12
MATHS
Let A = [[1,0,0],[1,0,1], [0,1,0]] " sat...

Let `A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I` for `nge 3` and
consider matrix `underset(3xx3)(U)` with its columns as `U_(1), U_(2), U_(3),` such that
` A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]]`
The value of `abs(A^(50))` equals

A

(a)`-1`

B

(b)0

C

(c)1

D

(d)25

Text Solution

Verified by Experts

The correct Answer is:
C

`because A^(n) = A^(n-2) + A^(2) - I rArr A^(50) = A^(48) + A^(2) - I`
Further, `{:(A^(48) =, A^(46) +, A^(2) ,- I) , (A^(46) =, A^(44) +, A^(2), -I),(vdots ,vdots,vdots, vdots),(A^(4)=,A^(2) +, A^(2),-I^(4)):} `
On adding all, we get
`A^(50) = 25 A^(2) - 24I` ...(i)
`abs(A^(50)) = abs(A)^(50) = abs((1,0,0),(1,0,1),(0,1,0))^(50) = (-1)^(50) = 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

If A= [[0,-2,3],[2,0,-1],[-3,1,0]] then A^5 is

If A = [(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3) -6A^(2) + 7A + 2I = 0 .

If A= [[0,1,0],[1,0,0],[0,0,1]] , then A^(2n)= where n is a positive integer.

If A = [(2,0,1),(0,-3,0),(0,0,4)] , verify A^(3) - 3A^(2) - 10A + 24I = 0 where 0 is zero matrix of order 3 xx 3 .

A= [[-1, 0],[0,2]] then A^3-A^2=

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is