Home
Class 12
MATHS
If B and C are non-singular matrices and...

If `B and C` are non-singular matrices and `O` is null matrix, then show that `[[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot`

Text Solution

Verified by Experts

We have, First part `[[A,O],[B,C]][[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]`
`=[[A A^(-1),O],[BA^(-1)-C C ^(-1)BA^(-1),C C^(-1)]]`
`=[[I,O],[BA^(-1)-BA^(-1),I]]=[[I,O],[0,I]]`
Hence, `[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` is the inverse of `[[A,O],[B,C]] `
Second part `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] = [[A,O],[B,C]]`
where `A = [[1,0],[1,1]], B=[[1,1],[1,1]],C=[[1,0],[1,1]]and O = [[0,0],[0,0]]`
and `A^(-) = [[1,0],[-1,1]],C^(-1)=[[1,0],[-1,1]]`
Now, `C^(-1)BA^(-1) = [[1,0],[-1,1]][[1,1],[1,1]][[1,0],[-1,1]] = [[0,0],[0,0]]`
`therefore` Inverse of `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] "is" [[1,0,0,0],[-1,1,0,0],[0,1,1,0],[0,0,-1,1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A=

If A={1,2},B={3,4} then show that A xx(B nn O/)=O/ .

If A and B are symmetric non-singular matrices of same order,AB = BA and A^(-1)B^(-1) exist, prove that A^(-1)B^(-1) is symmetric.

If A, B, C are invertible matrices, then (ABC)^(-1) is equal to

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

For a square matrix A and a non singular matrix B of the same order , the value of det (B^(-1)AB) is :

The inverse of the matrix [[1 , 0, 0],[ a , 1 , 0],[ b, c , 1]] is

If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsingular and C=(A+B)^(-1) (A-B) , then prove that (i) C^(T) (A+B) C=A+B (ii) C^(T) (A-B)C=A-B (iii) C^(T)AC=A

If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsingular and C=(A+B)^(-1) (A-B) , then prove that (i) C^(T) (A+B) C=A+B (ii) C^(T) (A-B)C=A-B (iii) C^(T)AC=A