Home
Class 12
MATHS
If A satisfies the equation x^3-5x^2+4x+...

If `A` satisfies the equation `x^3-5x^2+4x+lambda=0` , then `A^(-1)` exists if

A

`lambda!=1`

B

`lambda!=2`

C

`lambda!=-1`

D

`lambda!=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 .

The number of solutions of the equation x^(3)+x^(2)+4x+2sinx=0 in 0 le x le 2pi is

If A = [ (2,lambda,-3),(0,2,5),(0,1,3)] , then A^(-1) exists if :

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :

Solve the equation x^(2) - 5x+ 3 =0 by using the formula .

If y=e^(4x) + 2e^(-x) satisfies the relation y_3 + Ay_1 + By = 0 then

If the roots of the equation (x^(2) -bx)/(ax - c) = (lambda - 1)/(lambda + 1) are such that alpha + beta =0 , then the value of lambda is :

If y(x) satisfies the differential equation : y'-y tan x = 2 x sec x and y (0) =0 , then :

The real roots of the equation 5^("log"5(x^(2) - 4x + 5)) = x - 1 are :

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is