Home
Class 12
MATHS
If A^5=0 such that A^n != I for 1 <= n <...

If `A^5=0` such that `A^n != I` for `1 <= n <= 4`, then `(I - A)^-1` is equal to

A

`A^(4)`

B

`A^(3)`

C

`I+A`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

`A^(4) (I-A) = A^(4) I - A^(5)=A^(4) - 0 = A^(4) ne I`
`A^(3) (I-A) = A^(3) I- A^(4) = A^(3) - A^(4) ne I`
`(I + A) (I-A) = I^(2) - A^(2) = I -A^(2) ne I`
Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest integer n such that ((1 + i)/(1-i))^(n) = 1 is

Find the least positive integer 'n' such that ((1+i)/(1-i))^(n) =1 .

Let A=[(0,1),(0,0) ] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

The maximum value of n lt 101 such that 1+sum_(k=1)^(n)i^(k)=0 is

If A = [(i,0),(0,i)] then A^(4n) (n in N ) equals :

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is