Home
Class 12
MATHS
If A=[[cos theta,sin theta],[-sin theta,...

If A=`[[cos theta,sin theta],[-sin theta,cos theta]], ` then `lim _(n rarr infty )A^(n)/n ` is (where `theta in R`)

A

a zero matrix

B

an identity matrix

C

`[[0,1],[-1,0]]`

D

`[[0,1],[0,-1]]`

Text Solution

Verified by Experts

The correct Answer is:
A

`because A = [[cos theta , sin theta],[-sin theta, cos theta ]]`
`therefore A^(n) = [[cos ntheta , sin ntheta],[-sin ntheta, cos ntheta ]]`
`rArr A^(n)/n = [[lim_(nrarr infty)(cos ntheta)/n , lim_(nrarr infty)(sin ntheta)/n],[-lim_(nrarr infty)(sin ntheta)/n, lim_(nrarr infty)(cos ntheta)/n ]]= [[0,0],[0,0]]`
= a zero matirx `[because - 1 lt sin infty 1 and -1 lt cos infty lt 1]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[sin theta , cos theta],[-cos theta , -sin theta]] then A^(2)=

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

((cos theta+i sin theta)/(sin theta+i cos theta))^(4)=

If a cos theta-b sin theta=c then a sin theta+b cos theta=

If A_(theta) = [(cos theta ,sin theta ),(-sin theta ,cos theta )] then A_(alpha)A_(beta) equals :

cot theta=sin 2 theta,(theta ne n pi), if theta

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

Inverse of the matrix [[cos 2 theta,-sin 2 theta],[sin 2 theta , cos 2 theta]] is