Home
Class 12
MATHS
If matrix A=[a(ij)](3xx), matrix B=[b(ij...

If matrix `A=[a_(ij)]_(3xx)`, matrix `B=[b_(ij)]_(3xx3)`, where `a_(ij)+a_(ji)=0` and `b_(ij)-b_(ji)=0 AA i`, `j`, then `A^(4)*B^(3)` is

A

skew- symmetric matrix

B

singular

C

symmetric

D

Both B & C

Text Solution

Verified by Experts

The correct Answer is:
D

Since, A is skew-symmetric.
`therefore abs(A)=0`
`rArr abs(A^(4) B^(3)) = abs(A^(4)) abs(B^3) = abs(A)^(4) abs(B)^(3) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

A=[a_(ij)]_(mxxn) is a square matrix, if

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .

If matrix A = [a_(ij)] _(2xx2) where a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} then A^(2) is equal to :

Let P = [a_(ij)] be a 3xx3 matrix and let Q = [b_(ij)] , where b_(ij) = 2^(i+j)a_(ij) for 1 le I , j le 3 . If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

Construct a 2 xx 2 matrix A=[a_(ij)] , whose elements are given by a_(ij)= (i)/(j)

If in a square matrix A=(a_(i j)) we have a_(ji)=a_(i j) for all i , j then A is

Construct a 2 xx 2 matrix, A=[a_(ij)] , whose elements are given by a_(ij)=i/j

Construct a 3 xx 4 matrix, A = [a_(ij)] whose elements are given by: (ii) a_(ij) = 2i - j

Construct a 2 xx 2 matrix, A = [a_(ij)] , whose elements are given by: (ii) a_(ij) = i/j .

Construct a 3 xx 4 matrix, A = [a_(ij)] whose elements are given by: (i) a_(ij) = 1/2|-3i + j|