Home
Class 12
MATHS
If A=[[cos theta , sin theta],[sin theta...

If `A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1]], C=ABA^(T),` then
`A^(T) C^(n) A, n in I^(+)` equals to

A

`[[-n,1],[1,0]]`

B

`[[1,-n],[0,1]]`

C

`[[0,1],[1,-n]]`

D

`[[1,0],[-n,1]]`

Text Solution

Verified by Experts

The correct Answer is:
D

Here, `A= [[cos theta, sin theta ],[sin theta,-cos theta]]`
`rArr A A^(T) = I`
`because C=ABA^(T)rArr A^(T) C = BA^(T)`
`A^(T) C^(n) A=A^(T) Ccdot C^(n-1) A`
` = BA^(T)C^(n-1)A= BA^(T) C C^(n-2) A`
`= B^(2) A^(T) C^(n-2)A`
`..." "..." "...`
`=B^(n-1) A^(T) CA=B^(n-1)(BA^(T))A`
`= B^(n) A^(T) A=B^(n)I = B^(n)= [[1,0],[-n,1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

If a cos theta-b sin theta=c then a sin theta+b cos theta=

((cos theta+i sin theta)/(sin theta+i cos theta))^(4)=

If a=cos theta+i sin theta then (1+a)/(1-a)=

If the matrix [[cos theta,sin theta,0],[sin theta,cos theta,0],[0,0,1]] is singular then theta=

(1+cos 2 theta)/(sin 2 theta)=cot theta

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

(sin 2 theta)/(1-cos 2 theta)=cot theta

If sin theta = 1/2 , show that 3 cos theta - 4 cos^(3) theta = 0 .