Home
Class 12
MATHS
If A and B are different matrices satisf...

If `A` and `B` are different matrices satisfying `A^(3) = B^(3)` and
`A^(2) B = B^(2) A`, then

A

`det (A^(2) + B^(2))` must be zero

B

det `(A-B)` must be zero

C

`det (A^(2) + B^(2))` as well as `det (A - B)` must be zero

D

alteast one of `det (A^(2) + B^(2))` or `det (A - B)` must be zero

Text Solution

Verified by Experts

The correct Answer is:
D

`because A^(3) - A^(2) B = B^(3) - B^(2) A `
`rArr A^(2) (A-B) = B^(2)(B-A)`
or `(A^(2) + B^(2)) (A-B) =0`
or det `(A^(2)+B^(2)) cdot det (A-B) = 0`
Either det `(A^(2) + B^(2)) = 0` or det `(A-B) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are symmetric matrices, then A B A is

If A and B are two matrices such that B=-A^-1 B A then (A+B)^2=

If A and B are two symmetric matrices , then AB=B and BA = A , then A^(2) +B^(2) equals :

If A and B are square matrices of the same order such that (A+B)(A-B)=A^(2)-B^(2) , then (ABA)^(2)=

if A and B are squares matrices such that A^(2006)=O and A B=A+B , then ,"det"(B) equals

Let A and B be two square matrices such that A B=A and B A=B, then A^2=

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is

If A and B are any 2xx2 matrices , then det (A+B) = 0 implies :