Home
Class 12
MATHS
If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q...

If `A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]]` and if A is
invertible, then which of the following is not true?

A

`abs(A) = abs(B)`

B

`abs(A) = -abs(B)`

C

`abs(adjA) = abs(adjB)`

D

A is invertible `hArr` B is invertble

Text Solution

Verified by Experts

The correct Answer is:
A

`because abs(B) = abs((q, -b, y ),(-p, a ,-x),(r, -c, z))`
Applying `R-(2) rarr (-1) R_(2)`, then
`abs(B) = abs((q, -b, y ),(p, -a ,x),(r, -c, z))`
Appluing `C_(2) rarr (-1) C_(2),` then
`abs(B) = abs((q, b, y ),(p, a ,x),(r, c, z)) = abs(B^(T)) = abs((q,p,r),(b,a,c),(y,x,z))`
`= -abs((b,a,c),(q,p,r),(y,x,z)) [ R_(1) harr R_(2)]`
`= abs((b,a,c),(y,x,z),(q,p,r)) [ R_(1) harr R_(3)0]`
`= -abs((a,b,c),(x,y,z),(p,q,r)) =-abs(A)`
`rArr abs(B) = -abs(A)`
Also, `abs(adj B) = abs(B)^(2)`
` = abs(A)^(2) = abs(adjA) [because abs(A) ne 0 , "then"abs(B) ne 0]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The order of [[x,y,z]][[a,h,g],[h,b,f],[g,f,c]][[x],[y],[z]] is

Let A = {P, Q, R, S} and B = {1, 2, 3} which of the following relations from A to B is not a function.

[[ 0 , p-q , p-r ],[q-p , 0 , q-r],[ r-p , r-q , 0 ]] =

If [[ a , b , c],[ m , n , p],[ x , y , z ]] =k , then [[ 6 a , 2 b , 2 c ],[3 m , n , p],[ 3 x , y , z ]] =

If a, b, c are in A.P., a, x, b are in G.P., and b, y, c are in G.P., then (x, y) lies on :

Let A= [[a,b,c],[p,q,r],[x,y,z]] and suppose then det (A) = 2, then det (B) equals, where B = [[4x,2a,-p],[4y, 2b, -q],[4z, 2c, -r]]

P is the set of factors of 5, Q is the set of factors of 25 and R is the set of factors of 125. Which of the following is false? (A) P subset Q (B) Q subset R (C) R subset P (D) P subset R

If A={p,q,r} and B={q,p,r}. Then check whether A=B or not.

If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one is correct?

If P(1,2), Q(4,6), R(5,7) and S(a, b) are the vertices of a parallelogram P Q R S , then