Home
Class 12
MATHS
Let A =[[1,2,2],[2,1,2],[2,2,1]], then...

Let `A =[[1,2,2],[2,1,2],[2,2,1]]`, then

A

`A^(2) - 4A-5I_(3)=O`

B

`A^(-1) = 1/5 (A-4I_(3))`

C

`A^(3)` is not invertible

D

`A^(2)` is invertible

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`because A^(2)= [[1,2,2],[2,1,2],[2,2,1]][[1,2,2],[2,1,2],[2,2,1]]= [[9, 8,8],[8,9,8],[8,8,9]]`
We have, `A^(2) - 4A - 5 I_(3)`
`= [[9, 8,8],[8,9,8],[8,8,9]]-4[[1,2,2],[2,1,2],[2,2,1]]-5 [[1,0,0],[0,1,0],[0,0,1]]`
`=[[0,0,0],[0,o,0],[0,0,0]]= 0`
`rArr 5I_(3) =A^(2) - 4 A = A(A-4I_(3))`
` rArr I_(3) = 1/5 A(A-4I_(3))`
`therefore A^(-1) = 1/5 A (A-4I_(3))`
Since, `abs(A) = 5`
`therefore abs(A^(3)) = abs(A)^(3) = 125 ne 0 `
` rArr A^(3)` is invertible
Similarly, `A^(2)` is invertible.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let X= [[x_1],[x_2],[x_3]], A= [[1,-1,2],[2,0,1],[3,2,1]] and B= [[3],[1],[4]] and if A X=B , then X .

adj [[1,0,2],[-1,1,-2],[0,2,1]]= [[5,a,-2],[1,1,0],[-2,-2, b]] then (a, b)=

Let X= [[x],[y],[z]], D= [[3],[5],[11]] , A= [[1,-1,2],[2,1,1],[4,-1,-2]] . If X=A^-1 D , then X =

Let A = [(1,-1,1),(2,1,-3),(1,1,1)] and (10)B = [(4,2,2),(-5,0,alpha),(1,-2,3)] If B is the inverse of A , then alpha is :

If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]] then

Let A = [(1,0,0,),(2,1,0),(3,2,1)] . "If u_(1) and u_(2) are column matrices such that Au_(1) = [(1),(0),(0)] and Au_(2) = [(0),(1),(0)] then u_(1) +u_(2) is equal to :

Let A = [[1,2],[0,1]] . Then A^(n) =

Let A= [[1,-1],[2,-1]] and B= [[1,a],[4,b]] . If (A+B)^2=A^2+B^2 , then (a, b)=