Home
Class 12
MATHS
If A is a non - singular matrix then...

If A is a non - singular matrix then

A

`A^(-1)` is a non-singular matrix, then

B

`A^(-1)`is skew-symmetric if A is symmetric

C

`abs(A^-1) = abs(A)`

D

`abs(A^-1) = abs(A)^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`because abs(A) ne 0 rArr A^(-1) `
is also symmetric, if A is symmetric
and `abs(A^(-1)) = 1/abs(A) = abs(A) ^(-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If P is non-singular matrix, then value of adj (P^(-1)) in terms of P is

If A is a 3xx3 non - singular matrix and if |A| = 3 , then | (2A)^(-1)| =

If A is 3xx 3 non- singular matrix and if |A |=3 then |(2A)^(-1) |=

If A is a 3xx3 non -singular matrix , then det . [ adj .A] is equal to :

If A is a singular matrix, then adj A is

If A is non - singular square matrix , then |adj A| is :

If A is an 3xx3 non -sngular matrix such tat A A ' = A'A and B = A^(-1) A' tehn B B ' equals :