Home
Class 12
MATHS
Let, C(k) = ""^(n)C(k) " for" 0 le kle n...

Let, `C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]]` for
`k ge l and `
`A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]]`, then

A

`k_(1) = K_(2)`

B

`k_(1) + k_(2) = 2`

C

`k_(1) = ""^(2n)C_(n)-1`

D

`k_(2) = ""^(2n)C_(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`A_(1) + A_(2) + A_(3) +... + A_(n) = [[C_(0)^(2),0],[0,C_(1)^(2)]]+ [[C_(1)^(2),0],[0, C_(2)^(2)]]`
`+ [[C_(2)^(2),0],[0,C_(3)^(2)]]+...+ [[C_(n-1)^(2),0],[0, C_(n)^(2)]]`
` = [[C_(0)^(2)+C_(1)^(2) + C_(2)^(2)+...+C_(n-1)^(2),0],[0,C_(1)^(2)+C_(2)^(2)+C_(2)^(3)+...+C_(n)^(2)]]`
`[[""^(2n)C_(n)-1,0],[0,""^(2n)C_(n)-1]] =[[k_(1),0],[0,k_(2)]]` [given ]
`therefore k_(1) = k_(2) =""^(2n) C_(n)-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(k)=(1)/(k(k+1)) for k=1,2,3, .. , n, then (sum_(k=1)^(n) a_(k))^(2)=

If (1+x+x^(2))^(n) = sum_(r=0)^(2 n) a_(r). x^(r) then a_(1)-2 a_(2)+3 a_(3)-..-2 n. a_(2n) =

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

If (1 +x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … + a_(2n) x^(2n) , then a_(0) + a_(2) + a_(4) + … + a_(2n) equals

If A=[[1,0],[-1,7]] and A^2-8 A+k I=0 , then k=

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :

Show that two lines a_(1)x + b_(1) y+ c_(1) = 0 " and " a_(2)x + b_(2) y + c_(2) = 0 " where " b_(1) , b_(2) ne 0 are : (i) Parallel if a_(1)/b_(1) = a_(2)/b_(2) , and (ii) Perpendicular if a_(1) a_(2) + b_(1) b_(2) = 0 .

For natural number m, n if (1-y)^(m)(1+y)^(n)=1+a_(1)y+a_(2)y^(2)+ . . . . ., and a_(1)=a_(2)=10 , then (m,n) is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is