Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value ` a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2)`, is

A

`2lambda`

B

`-2lambda`

C

`lambda^(2)`

D

`-lambda`

Text Solution

Verified by Experts

The correct Answer is:
B

`becauseA` is an orthogonal matrix
`therefore A A^(T) =I`
`[[a,b,c],[b,c,a],[c,a,b]] [[a,b,c],[b,c,a],[c,a,b]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
`[[a^(2)+b^(2)+c^(2),ab + bc+ca,ab + bc+ ca],[ab + bc + ca,a^(2) +b^(2)+c^(2) , ab+ bc+ ca ],[ab+ bc+ca,ab+bc+ca,a^(2) + b^(2) + c^(2)]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
By equality of matrices, we get
`a^(2) + b^(2) +c^(2) = 1 ` ...(i)
`ab + bc + ca= 0` ...(ii)
` (a+b+c)^(2) + a^(2)= b^(2) +c^(2)+ 2 (ab + bc + ca)`
`= 1 + 0 = 1`
` therefore a+ b + c = pm 1` ...(iii)
`because a^(2) b^(2) + b^(2) a^(2) + c^(2) a^(2) = (ab + bc+ ca) ^(2) - 2abc (a + b + c)`
`= 0- 2abc (pm 1) pm 2 lambda [ because abc = lambda ]`
` = - 2 lambda ` `[because lambda lt 0]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

If a^(2) = b^(2) +c^(2) , then c is given by

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If a + b + c = 0, then x^((a^(2))/(bc)), x^((b^(2))/(ca)) , x((c^(2))/(ab)) equals :

(a^(2)-b^(2))/(c^(2)-a^(2))=c/b . (sin(A-B))/(sin(C-A))

(a^(2)-b^(2))/(c^(2)-a^(2))=c/b . (sin(A-B))/(sin(C-A))

In a triangle A B C , if a, b, c are in A.P then tan (A)/(2), tan (B)/(2), tan (C)/(2) are in

In a triangle A B C, if cot A, cot B, cot C are in A.P, then a^(2), b^(2), c^(2) are in