Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] then fi...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` then find tranpose of A matrix

Text Solution

Verified by Experts

The correct Answer is:
D

`becauseA` is an orthogonal matrix
`therefore A A^(T) =I`
`[[a,b,c],[b,c,a],[c,a,b]] [[a,b,c],[b,c,a],[c,a,b]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
`[[a^(2)+b^(2)+c^(2),ab + bc+ca,ab + bc+ ca],[ab + bc + ca,a^(2) +b^(2)+c^(2) , ab+ bc+ ca ],[ab+ bc+ca,ab+bc+ca,a^(2) + b^(2) + c^(2)]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
By equality of matrices, we get
`a^(2) + b^(2) +c^(2) = 1 ` ...(i)
`ab + bc + ca= 0` ...(ii)
` (a+b+c)^(2) + a^(2)= b^(2) +c^(2)+ 2 (ab + bc + ca)`
`= 1 + 0 = 1`
` therefore a+ b + c = pm 1` ...(iii)
` because a^(3) + b^(3) +c^(3) - 3abc = (a+b+c) `
`(a^(2) + b^(2) +c^(2) - ab - bc - ca)`
`rArr a^(3) + b^(3) + c^(3) - 3lambda = (pm 1) (1-0) `
[from Eqs.(i), (ii) and (iii) and abc` = lambda`]
`rArr a^(3) + b^(3)+ c^(3) = 3lambda pm 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

|(a,b,c),(b,c,a),(c,a,b)| =

If |[b+c,c+a,a+b],[a+b,b+c,c+a],[c+a,a+b,b+c]|=k |[a,b,c],[c,a,b],[b,c,a]| then the value of k is

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

IF a+b+c ne 0 and {:|(a,b,c),(b,c,a),(c,a,b)| =0, then using properties of determinants, prove that a=b=c

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

If Delta= |[0,b-a,c-a],[a-b,0,c-b],[a-c,b-c,0]| then Delta=

If, a,b,c are positive and unequal,show that value of the determinant Delta ={:[( a,b,c),( b,c,a),( c,a,b)]:} is negative

Let U={a,b,c,d,e,f,g,h} find the complements of the following sets: C={a,c,e,g}