Home
Class 12
MATHS
LetA = [a(ij)](3xx 3) If tr is arithmeti...

Let`A = [a_(ij)]_(3xx 3)` If tr is arithmetic mean of elements of rth row and `a_(ij )+ a_( jk) + a_(ki)=0` hold for all `1 le i, j, k le 3.` ` sum_(1lei) sum_(jle3) a _(ij)` is not equal to

A

`t_(1) + t_(2) + t_(3)`

B

zero

C

`(det(A))^(2)`

D

`t_(1) t_(2)t_(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`therefore A = [[a_(11) , a_(12),a_(13)],[a_(21),a_(22), a_(23) ],[a_(31), a_(32),a_(33)]]`
`rArr t_(1) = (a_(11) + a_(12)+a_(23))/3 = 0, [because a_(ij) + a_(jk) + a_(ki)=0]`
`t_(2) = (a_(21) + a_(22) + a_(23))/3 = 0`
and `t_(3) = (a_(31) + a_(32) + a_(33))/3 = 0`
`sum _(1lei), sum _(jle 3) a_(ij) =3 (t_(1) + t_(2) + t_(3)) = 0 = t_(1) + t_(2) + t_(3) `
`ne t_(1) t_(2) t_(3) " "[because t_(1) = 0 , t_(2 ) = 0, t_(3) = 0]`
and det ` A = [[a_(11) , a_(12),a_(13)],[a_(21),a_(22), a_(23) ],[a_(31), a_(32),a_(33)]]`
Applying `C_(1)rarr C_(1)+ C_(2) +C_(3),` we get
` = [[0 , a_(12),a_(13)],[0,a_(22), a_(23) ],[0, a_(32),a_(33)]]=0`
`therefore (detA)^(2) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Construct a 2 xx 3 whose elements are given by a_(i j) = |i - j| .

Let P = [a_(ij)] be a 3xx3 matrix and let Q = [b_(ij)] , where b_(ij) = 2^(i+j)a_(ij) for 1 le I , j le 3 . If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

If matrix A = [a_(ij)] _(2xx2) where a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} then A^(2) is equal to :

If a_(k)=(1)/(k(k+1)) for k=1,2,3, .. , n, then (sum_(k=1)^(n) a_(k))^(2)=

The number of real roots of : 1 + a_(1)X + a_(2) x^(2) .... + a_(n) x^(n) = 0 , where |x| lt (1)/(3) and | a_(n) | lt 2 , is :

Construct a 2 xx 2 matrix A=[a_(ij)] , whose elements are given by a_(ij)= (i)/(j)

Construct a 3 xx 2 matrix whose elements are given by a_(ij) = 1/2|i - 3j| .

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .