Home
Class 12
MATHS
LatA = [a(ij)](3xx 3). If tr is arithmet...

Lat`A = [a_(ij)]_(3xx 3).` If tr is arithmetic mean of elements of rth row
and `a_(ij )+ a_( jk) + a_(ki)=0` holde for all `1 le i, j, k le 3.`
Matrix A is

A

non- singular

B

symmetric

C

skew-symmetric

D

nether symmetric nor skew-symmetric

Text Solution

Verified by Experts

The correct Answer is:
C

`therefore A = [[a_(11) , a_(12),a_(13)],[a_(21),a_(22), a_(23) ],[a_(31), a_(32),a_(33)]]`
`rArr t_(1) = (a_(11) + a_(12)+a_(23))/3 = 0, [because a_(ij) + a_(jk) + a_(ki)=0]`
`t_(2) = (a_(21) + a_(22) + a_(23))/3 = 0`
and `t_(3) = (a_(31) + a_(32) + a_(33))/3 = 0`
`because a_(11) + a_(11) + a_(11) = 0, a_(11) + a_(12) + a_(21)= 0,`
` a_(11) + a_(13) + a_(31) = 0, a_(22) + a_(22) + a_(22)= 0, `
` a_(22) + a_(12) + a_(21) = 0, a_(22) + a_(22) + a_(22)= 0, `
` a_(33) + a_(13) + a_(31) = 0, a_(33) + a_(23) + a_(32)= 0, `
and ` a_(33) + a_(12) + a_(21) = 0,` we get
`a_(11) = a_(22) = a_(33) = 0 `
and `a_(12) =-a_(21), a_(23) = - a_(32), a_(13) = -a_(31)`
Hence, A is skew - symmetric matrix.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [a_(ij)]_(3xx 3) If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 hold for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

If in a square matrix A=(a_(i j)) we have a_(ji)=a_(i j) for all i , j then A is

Let P = [a_(ij)] be a 3xx3 matrix and let Q = [b_(ij)] , where b_(ij) = 2^(i+j)a_(ij) for 1 le I , j le 3 . If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

Construct a 2 xx 3 whose elements are given by a_(i j) = |i - j| .

The number of real roots of : 1 + a_(1)X + a_(2) x^(2) .... + a_(n) x^(n) = 0 , where |x| lt (1)/(3) and | a_(n) | lt 2 , is :

Construct a 2 xx 2 matrix, A = [a_(ij)] , whose elements are given by: (ii) a_(ij) = i/j .

Construct a 2 xx 2 matrix A=[a_(ij)] , whose elements are given by a_(ij)= (i)/(j)

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .

Construct a 2 xx 2 matrix, A = [a_(ij)] , whose elements are given by: (i) a_(ij) = ((i + j)^(2))/(2)