Home
Class 12
MATHS
If the matrix A = [[lambda(1)^(2), lambd...

If the matrix `A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]` is idempotent,
the value of `lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2)` is

Text Solution

Verified by Experts

The correct Answer is:
1

`because A^(2) = Acdot A = [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]`
` = [[lambda_(1)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)) ],[lambda_(2)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(2)^(2) (lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(2)lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))],[lambda_(3)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))]]`
`= (lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) ) A`
Given, A is idempotent
`rArr A^(2) = A`
`= lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) = 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0 and if greatest and least values of (sum_(i=1)^(n)a_(i))^(2) are lambda_(1) and lambda_(2) respectively, then (lambda_(1)-lambda_(2)) is

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

if A=[(1,2),(2,3)] and A^(2) -lambdaA-I_(2)=O, then lambda is equal to

If (-2,7) is the highest point on the graph of y =-2x^2-4ax +lambda , then lambda equals

If lambda_(1) and lambda_(2) are the wavelengths of the first members of the Lyman and Paschen series respectively, then lambda_(1) : lambda_(2) is

The function f(x)=lambda|sinx|+lambda^(2)|cosx|+g(lambda) has period equal to (pi)/(2) if lambda is :

The equation 2 sin^(3) theta+(2 lambda-3) sin^(2) theta-(3 lambda+2) sin theta-2 lambda=0

The equation (x^(2))/(10-lambda)+(y^(2))/(6-lambda)=1 represents