Home
Class 12
MATHS
Suppose a, b, c, in R and abc = 1, if A...

Suppose `a, b, c, in R ` and `abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]]` is such that `A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, ` the value of `a^(3) + b^(3) + c^(3)` is

Text Solution

Verified by Experts

The correct Answer is:
9

`because A = [[3a, b, c],[c,3c, a],[c, a, 3b]]`
`therefore det (A)= [[3a, b, c],[c,3c, a],[c, a, 3b]]= 29 abc - 3(a^(3) + b^(3) +c^(3) )`
or
`abs(A)= 29 abc - 3(a^(3) + b^(3) +c^(3) ) " " ...(i)`
Given, `A^(T) A + 4^(1//3)I`
`rArr abs(A^(T)A) =abs( 4^(1//3)I)`
`rArr abs(A^(T))abs(A) = (4^(1//3))^(3)abs(I)`
`rArr abs(A)abs(A) = 4.1`
`therefore abs(A) = 2 " " [because abs(A) gt0]`
From Eq.(i) we get
`2 = 29abc - 3 ( a^(3) + b^(3) + c^(3) )`
`rArr 2 = 29 - 3 ( a^(3) + b^(3) + c^(3) ) " " because abc = 1]`
` therefore a^(3) + b^(3) c^(3) = 9`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

Fractorise a ^(3) - 8b ^(3) - 64 c^(3) - 24 abc

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

In a DeltaABC , if a+b=3c , then the value of cot.(A)/(2)cot.(B)/(2) is

If a,b,c are in A.P., the 3^(a), 3^(b) , 3^(c ) are in :

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

Suppose a,b,c are in A.P. and a^(2) , b^(2) , c^(2) are in G.P. If a lt b lt c and a+ b + c = ( 3)/( 2) , then the value of a is :

Suppose vec a + vec b + vec c = 0, |vec a| = 3, |vec b| = 5, |vec c| = 7 , then the angle between vec a and vec b is

If A = [(1,-1),(2,3)], B = [(1,3),(-1,4)] and C = [(2,-2),(3,0)] verify that A(BC) = (AB)C .

If the centroid of a triangle formed by the points a. b), (b, c), and (c a) is at the origin, then a^(3) + b^(3) + c^(3) =