Home
Class 12
MATHS
Let the matrix A and B defined as A=|[3,...

Let the matrix A and B defined as `A=|[3,2] , [2,1]|` and `B=|[3,1] , [7,3]|` Then the value of `|det(2A^9 B^(-1))|=`

Text Solution

Verified by Experts

The correct Answer is:
2

`because A = [[3,2],[2,1]] and B= [[3,1],[7,3]]`
`therefore det A =-1 and det B= 2`
Now, `det(2A^(9) B^(-1)) = 2^(2) cdot det (A^(9)) cdot det (B^(-1))`
` = 2^(2) cdot (det A)^(9)cdot (det B)^(-1)`
` = 2^(2) cdot (-1)^(9)cdot (2)^(-1)=-2`
Hence, absolute value of `det ( 2A^(9)B^(-1))=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det (C)=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

If the matrix A is such that A[[-1,2],[3,1]]=[[-4,1],[7,7]] then A=

If 2 A+3 B=[[2,-1,4],[3,2,5]] and A+2 B=[[5,0,3],[1,6,2]] then B =

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .

If A=[[2,3 ],[4,1]], B=[[1,2],[3,1]], then 2 A-3 B is

Let A= {:[( 3,7),( 2,5) ]:} and B = {:[( 6,8),( 7,9) ]:} .Verify that (AB) ^(-1) =B^(-1) A^(-1)

Let A be a squarre matrix of order of order 3 satisfies the matrix equation A^(3) -6 A ^(2) + 7 A - 8 I = O and B = A- 2 I . Also, det A = 8. The value of det (adj(I-2A^(-1))) is equal to

Solve the following equations by matrix method. Let A = [(3,7),(2,5)] and B = [(6,8),(7,9)] verify that (AB)^(-1) = B^(-1)A^(-1) .

For a square matrix A and a non singular matrix B of the same order , the value of det (B^(-1)AB) is :

Let A= [[1,-1],[2,-1]] and B= [[1,a],[4,b]] . If (A+B)^2=A^2+B^2 , then (a, b)=