Home
Class 12
MATHS
Let A = [[0, alpha],[0,0]] and(A+I)^(70)...

Let `A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]],` the
value of ` a + b + c + d ` is

Text Solution

Verified by Experts

The correct Answer is:
6

`because A = [[0 ,alpha],[0,0]]`
`therefore A^(2) = Acdot A = [[0 ,alpha],[0,0]][[0 ,alpha],[0,0]]=[[0 ,0],[0,0]]=0`
`rArr A^(2) = A^(3) = A^(4) = A^(5) = ...= 0`
Now, `(A + I) ^(70) = (I+A)^(70)`
`= I + ""^(70)C_(1) A + ""^(70)C_(2) A^(2) + ""^(70)C_(3) A^(3) +...+ ""^(70)C _(70)A^(70`
`= I + 70 A + 0 + 0 + ...=I+70A`
`rArr (A+I) ^(70) - 70 A = I = [[1,0],[0,1]]= [[a-1,b-1],[c-1, d-1]]` [given ]
`therefore a- 1 = 1, b-1 = 0, c-1 = 0, d-1=1`
`rArr a=2, b=1, c=, d=2`
Hence, `a + b + c + d = 6`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50 A=[(a,b),(c,d)] Then the value of a+b+c+d is

If A=[[alpha,0],[1,1]] and B=[[1,0],[5,1]] then the value of alpha for which A^2=B is

If A=[[alpha , 0] ,[ 1 , 1]] and B=[[1 , 0] ,[ 5 , 1]] whenever A^(2)=B , then value of alpha is

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If A= [[1, 0,0],[0,1, 0],[a, b,-1]] then A^2=

If A = ((a,b),(c,d)) , such that ad - bc != 0 then A^(-1) is :

If I= [[1,0],[0,1]] and J= [[0,1],[-1,0]] and B = [[cos theta, sin theta],[-sin theta, cos theta]] , then B=

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is