Home
Class 12
MATHS
Find |adj(A)| if |A|= 7 and A is a squar...

Find `|adj(A)|` if |A|= 7 and A is a square matrix of order 3

Text Solution

Verified by Experts

The correct Answer is:
`(A) rarr (r,t); (B) rarr (s); (C) rarr (p); (D) rarr (q)`

`(A) rarr (r,t), (B) rarr (s), (C) rarr (p), (D) rarr (q)`
(A) `adj (A^(-1)) = (A^(-1))^(-1) det (A^(-1)) = A/(det(A))`
`("adj"" adj"A)/((adj A)^(n-1) )=(A[det(A)]^(n-2))/((detA)^(n-1) )=A / (det(A))`
(B) `det(adj A^(-1))= (det A^(-1))^(n-1)`
`= 1/((det A)^(n-1))=(detA)^(1-n)`
(C) `"adj" ["adj "A] = A (det A) ^(n-2)`
`"adj" (A det A) = (detA)^(n-1) ("adj 0"A)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |adj(A)|= 11 and A is a square matrix of order 2 then find the value of |A|

If determinant of A = 5 and A is a square matrix of order 3 then find the determinant of adj(A)

Let A be a square matrix of order 3xx3" then "|5A|=

Let A be a square matrix of order 3xx3 , then |5A| =

If A,B are square matrices of order 3 , then :

If A is a square matrix then A . A^(T) is

A=[a_(ij)]_(mxxn) is a square matrix, if

If A is a singular matrix, then adj A is

If A is a square matrix of order 3 and I is an ldentity matrix of order 3 such that A^(3) - 2A^(2) - A + 2I =0, then A is equal to