Home
Class 12
MATHS
2^((1)/(4))*4^((1)/(8))*8^((1)/(16))*16^...

`2^((1)/(4))*4^((1)/(8))*8^((1)/(16))*16^((1)/(32))"....."` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`[[cos theta cos phi cos(theta ~phi), cos theta sin phi cos (theta~phi) ],[sintheta cos phi cos (theta~phi), sin theta sin phi cos (theta~phi) ]]`

`AB = [[cos^(2)theta,costhetasintheta],[costhetasintheta,sin^(2)theta]][[cos^(2)phi,cosphisinphi],[cosphisinphi,sin^(2)phi]]`
` = {:[[cos^(2)theta cos^(2)phi+cos theta cos phi sintheta sinphi],[cos^(2)phi cos theta sin theta+sin^(2)theta sin phi cos phi]:}`
` {:[cos^(2)theta cosphisin phi+sin^(2) phi sinthetacos theta ],[cos theta cos phi sin thetasin phi+sin^(2)theta sin^(2) phi ]]`
` {:[[costheta cosphi (costheta cosphi + sintheta sin phi ) ],[sin theta cos phi (cos theta cos phi + sin theta sin phi)]:}`
` {:[cosphi sinphi (costheta cosphi + sintheta sin phi ) ],[sin theta sin phi (cos theta cos phi + sin theta sin phi)]]`
`[[cos theta cos phi cos (theta-phi),cos theta sin phi cos(theta-phi)],[sin theta cos phi (theta - phi),sin theta sin phi cos (theta-phi)]]`
Clearly, AB is the zero matrix, if cos `theta~ phi) = 0` i.e., `theta - phi` is an
odd multiple of `pi/2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (16)^((1)/(2))

The value of ( 0.2)^(logsqrt(5)((1)/(4) + ( 1)/( 8 ) + ( 1)/( 16) +"......")) is :

The value of (0.2) log _(sqrt(5)) ((1)/(4) +( 1)/( 8 ) +(1)/( 16)+"........" to oo ) is :

If Z= ((sqrt3 +1)^(3) (3i + 4)^(2))/((8+ 6i)^(2)) then |Z| is equal to

The value of 2^(1//4).4^(1//8).8^(1//16)"…………." to oo is :

If S_(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S_(n) equals

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

The value of the product 6^(1/2)xx6^(1/4)xx^(1/8)xx6^(1/16) . . . . .oo is

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+......... is equals to (a). 2^n-n-1 (b). 1-2^(-n) (c). n+2^(-n)-1 (d). 2^n+1