Home
Class 12
MATHS
Show that the matrix A = [[1 , a,alpha ,...

Show that the matrix `A = [[1 , a,alpha , aalpha],[1, b, beta, b beta ],[1 ,c,gamma ,cgamma ]]` is of renk 3
provided no two of a, b, c are equal and no two of `alpha ,beta,gamma `
are equal.

Text Solution

Verified by Experts

We have , `A= [[1,a, alpha , aalpha],[1, b ,beta,b beta ],[1 ,c, gamma,cgamma]]`
Applying `R_(2) rarr R_(2) - R_(1) and R_(3) rarr R_(3) -R_(1),` we get
`A= [[1,a, alpha , aalpha],[0, b-a ,beta-alpha,b beta-aalpha ],[0,c-a, gamma-alpha,cgamma-aalpha]]`
Applying `C_(2) rarr C_(2) - aC_(1), C_(3) rarr C_(3)- alphaC_(1) and C_(4) rarr C_(4) - a alpha C_(1), ` we get
`A= [[1,0, 0 , 0],[0, b-a ,beta-alpha,b beta-aalpha ],[0,c-a, gamma-alpha,cgamma-aalpha]]`
Applying ` C_(4) rarr C_(4) - alpha C_(2) - bC_(3)` we get
`A= [[1,0, 0 , 0],[0, b-a ,beta-alpha,0 ],[0,c-a, gamma-alpha,(c-b)(gamma-alpha)]]`
For `p(A)= 3`
`c- a ne 0 , gamma - alpha ne 0, c-bne 0, b-a ne0 , beta - alpha ne 0 `
i.e.,`ane b, bnec, cnea and alpha ne beta, beta ne gamma , gamma ne alpha `
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[a , b] ,[ b , a]] A^(2)=[[alpha , beta] ,[ beta , a]] then

Reflexion of the point (alpha, beta, gamma) in XY plane is

Reflection of the point (alpha, beta, gamma) in XY plane is

If alpha+beta+gamma=2 pi, then

If [(alpha,beta),(gamma,-alpha)] is to be square root of the two rowed unit matrix , then alpha , beta and gamma should satisfy the relation :

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If a,b,c are in GP as well as alpha,beta, gamma, delta , then A,B,C are in:

Let alpha,beta,gamma be the roots of (x-a) (x-b) (x-c) = d, d != 0 , then the roots of the equation (x-alpha)(x-beta)(x-gamma) + d =0 are :

If cos alpha, cos beta, cos gamma are the direction cosines fo a vector veca, then cos 2alpha + cos 2beta + cos 2gamma is equal to

If alpha and beta are the rotos of a x^(2)+b x+c=0 the equation whose roots are 2+alpha and 2+beta is