Home
Class 12
MATHS
By the method of matrix inversion, solve...

By the method of matrix inversion, solve the system.
`[(1,1,1),(2,5,7),(2,1,-1)][(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(9,2),(52,15),(0,-1)]`

Text Solution

Verified by Experts

The correct Answer is:
`x- 1, u =-1, y = 3, v= 2, z=5, w = 1`

We have, `[[1,1,1],[2,5,7],[2,1,-7]][[x,u],[y,v],[x,omega]][[9,2],[52,15],[0,-1]]`
or `AX = B`
or ` X = a^(-1) B` …(i)
Where, `A= [[1,1,1],[2,5,7],[2,1,-7]],X=[[x,u],[y,v],[x,omega]]and B=[[9,2],[52,15],[0,-1]]`
`therefore abs(A) = (-5-7)-1(-2-14)+1(2-10)`
` = -12+16-8=-4ne0`
Let C be the matrix of cofactors of elements of `abs(A)`.
`therefore C=[[C_(11),C_(12),C_(13)],[C_(21),C_(22),C_(23)],[C_(31),C_(32),C_(33)]]`
`=[[abs([5,7],[1,-1]),-abs((2,7),(2,-1)),abs((2,5),(2,1))],[-abs((1,1),(1,-1)),abs((1,1),(2,-1)),-abs((1,1),(2,1))],[abs((1,1),(5,7)),-abs((1,1),(2,7)),abs((1,1),(2,5))]]`
`= [[-12,2,2],[16,-3,-5],[-8,1,3]]`
`therefore" adj "A = C'= [[-12,2,2],[16,-3,-5],[-8,1,3]]`
`therefore" "A^(-1)=("adj "A)/abs(A) =-1/4 [[-12,2,2],[16,-3,-5],[-8,1,3]]`
Now, `therefore" "A^(-1)B =-1/4 [[-12,2,2],[16,-3,-5],[-8,1,3]]xx[[9,2],[52,15],[0,-1]]`
`= -1/4 [[-4,4],[-12,-8],[-20,-4]]= [[1,-1],[3,2],[5,1]]`
From Eq. (i) `X=A^(-1) B`
`rArr [[x,u],[y,v],[z,w]]=[[1,-1],[3,2],[5,1]]`
on equating the corresponding elements, we have
`x =1, u = -1`
`y = 3, v=2`
` z = 5, w= 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) are the vertices of a triangle whose area is 'k' square units, then |(x_(1),y_(1),4),(x_(2),y_(2),4),(x_(3),y_(3),4)|^(2) is

Find the coordinates of the centroid fof the triangle whose vertices are (x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3))

Find the inverse of the matrix (if it exists ) {:[( 1,0,0),( 3,3,0),( 5,2,-1) ]:}

If |(2a,x_(1),y_(1)),(2b,x_(2),y_(2)),(2c,x_(3),y_(3))| = (abc)/2 != 0 , then the area of the triangle whose vertices are ((x_(1))/a,(y_(1))/a),((x_(2))/b,(y_(2))/b)and ((x_(3))/c,(y_(3))/c)

Find x and y, if 2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]

Solve the system of equations {(|x-1|+|y-2|=1),(y=2-|x-1|):}

If the tangents at (x_(1),y_(1)) and (x_(2),y_(2)) to the parabola y^(2)=4ax meet at (x_(3),y_(3)) then

Solve for x and y : (x+1)/(2)+(y-1)/(3)=9, (x-1)/(3)+(y+1)/(2)=8 .

If x_(1), x_(2), x_(3) as well as y_(1), y_(2), y_(3) are in G.P. with the same common ratio, then the points (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) :