Home
Class 12
MATHS
A=[(a,1,0),(1,b,d),(1,b,c)] then find th...

`A=[(a,1,0),(1,b,d),(1,b,c)]` then find the value of |A|

Text Solution

Verified by Experts

AX =U has infiinite many solutions
`rArr abs(A) = 0 = abs(A_(1))= abs(A_(2))=abs(A_(3))`
Now, `abs(A) = 0 `
`rArr abs((a,1,0),(1,b,d),(1,b,c)) = 0 rArr (ab-1)(c-d)=0`
`rArr ab = 1 or c=d" "...(i)`
and `abs(A_(1))=0`
`rArr [[f,1,0],[g,b,d],[h,b,c]]=0`
`rArr fb(c-d) - gc + hd = 0`
`rArr fb(c-d)=gc-hd` ...(i)
`rArr abs(A_(2))=0`
`rArr abs((a,f,0),(1,g,d),(1,h,c)) = 0`
`rArra (gc-dh)-f(c-d)=0`
` rArr a(gc-dh)=f(c-d)` ...(iii)
`abs(A_(3))=0`
`rArr [[a,1,f],[1,b,g],[1,h,c]]=0`
`rArr (h-g)(ab-1)=0`
`rArr h=g or ab =1 ` ...(iv)
Taking `c= d rArr h = g and ab ne 1` (from Eqs. (i). (ii) and (iv))
Now, thaing `BX=V,`
Then, `abs(B) = abs((a,1,1),(0,b,c),(f,g,h))=0`
[`because` In view of c = d and g = h, `c_(2) and c_(3)` are identical]
`rArr BX=V` has no unique solution.
and `abs(B_(1))=abs((a^(2),1,1),(0,d,c),(0,g,h))=0 " "[because c= d, g= h]`
`abs(B_(2))=abs((a,a^(2),1),(0,0,c),(f,0,h))=a^(2)fc =a^(2)df " " [because c=d]`
and `abs(B_(3))=abs((a,1,a^(2)),(0,d,0),(f,g,0))=-a^(2)df `
If `a^(2)df ne 0, ` then `abs(B_(2)) = abs(B_(3))ne 0` Hence, on solution exist.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b, c are all different from zero and |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=0 then the value of 1+1/a+1/b+1/c is :

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If a,b and c are three consecutive positive integers such that 1/(a!)+1/(b!)=lambda/(c!) then find the value of root under lambda .

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

Let a, b, c be such that b(a+c) ne 0 . If |[a,a+1,a-1],[-b,b+1,b-1],[c,c-1,c+1]|+ |[a+1,b+1,c-1],[a-1,b-1,c+1],[(-1)^(n+2) a ,(-1)^(n+1) b ,(-1)^(n) c]|=0 then the value of n is

If A=[[alpha,0],[1,1]] and B=[[1,0],[5,1]] then the value of alpha for which A^2=B is

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50 A=[(a,b),(c,d)] Then the value of a+b+c+d is