Home
Class 12
MATHS
If A = [(1,0,0),(0,1,1),(0,-2,4)] and a...

If `A = [(1,0,0),(0,1,1),(0,-2,4)] ` and also `A^(-1)=1/6 (A^(2)+cA+dI)` , where I is unit matrix , then the ordered pair (c,d) is :

A

`(6, 11)`

B

`(6, -11)`

C

`(-6, 11)`

D

`(-6,-11)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `A= [[1,0,0],[0,1,1],[0,-2,4]], A^(-1) = 1/6 [[6,0,0],[0,4,-1],[0,2,1]]`
`A^(2)= [[1,0,0],[0,1,1],[0,-2,4]] [[1,0,0],[0,1,1],[0,-2,4]]= [[1,0,0],[0,-1,5],[0,-10,14]]`
`cA= [[c,0,0],[0,c,c],[0,-2c,4c]] ,dI= [[d,0,0],[0,d,0],[0,0,d]]`
`therefore` By `A^(-1)=1/6[A^(2) + cA+dI]`
`rArr 6= 1 + c+d` [By equality of matrices]
`therefore (-6,11)` satisfy the relation.
Promotional Banner

Similar Questions

Explore conceptually related problems

If [(2,1,0),(0,2,1),(1,0,2)] then |adjA|=

Find |3A|,if A=[(1,0,1),(0,1,2),(0,0,4)]

If A = [(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3) -6A^(2) + 7A + 2I = 0 .

If A = [ (1,2,2),(2,1,-2),(a,2,b)] is a matrix satifying the equation "AA"^(T)= 9I where I is a 3xx3 identify matrix , thenthe ordered pair (a,b) is equal to :

If A = [(2,0,1),(0,-3,0),(0,0,4)] , verify A^(3) - 3A^(2) - 10A + 24I = 0 where 0 is zero matrix of order 3 xx 3 .

If A= [[2,1,0],[0,2,1],[1, 0,2]] then |adj A|=

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A = [{:(1,0,2),(0,2,1),(2,0,3):}],Provethat A^(3)-6A^(2)+7A+21=0

If A = [[1,0,0],[0,1,0],[0,0,1]] , then A^2+2 A=