Home
Class 12
MATHS
If A^(2)-A+I=O, then A^(-1) is equal to...

If `A^(2)-A+I=O`, then `A^(-1)` is equal to

A

`A^(-2)`

B

`A + I`

C

`I - A`

D

`A - I`

Text Solution

Verified by Experts

The correct Answer is:
C

`A^(2) -A+I=0`
` rArr I=A-A^(2) rArr I = A(I-A)`
`rArr A^(-1) I = A^(-1) (A(I-A))rArr A^(-1) =I - A`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2) - 3 A + 2I = 0, then A is equal to

(1 - i)^9 is equal to

If A is square matrix such that A^(2)=A , then (I+A)^(3)-7A is equal to

If A is a square matrix of order 3 and I is an ldentity matrix of order 3 such that A^(3) - 2A^(2) - A + 2I =0, then A is equal to

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to

If A^(2) - A + I = O , then the inverse of A is :

If A = [(1,0),(1/2,1)] , then A^100 is equal to

If matrix A = [a_(ij)] _(2xx2) where a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} then A^(2) is equal to :

If f(x)= (2 x+1)/(3 x-2) , then f o f(2) is equal to

if A=[(1,2),(2,3)] and A^(2) -lambdaA-I_(2)=O, then lambda is equal to