Home
Class 12
MATHS
If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U...

If `A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3)` are column matrices
satisfying `AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1))` and
`U` is `3xx3` matrix when columns are`U_(1), U_(2), U_(3)` then
answer the following questions
The value of (3 2 0) `U((3),(2),(0))` is

A

(a) 5

B

`5//2`

C

4

D

`3//2`

Text Solution

Verified by Experts

The correct Answer is:
A

The value of
`((3,2,0))U((3),(2),(0))= ((3,2,0))((1,2,2),(-2,-1,-1),(1,-6,-3))((3),(2),(0))`
`((-1,4,4))((3),(2),(0))`
`=(-3+8+0)=5`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1=[(1),(0),(0)],AU_2=[(2),(3),(6)],AU_3=[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

Let A = [(1,0,0,),(2,1,0),(3,2,1)] . "If u_(1) and u_(2) are column matrices such that Au_(1) = [(1),(0),(0)] and Au_(2) = [(0),(1),(0)] then u_(1) +u_(2) is equal to :

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)

If A= ((2,0,1),(2,1,3),(1,-1,0)) then find the value of A^(2)-3A +2I.

If ((2, 1),(3, 2))A=((1,0),(0,1)) , then the maxtrix A is

If A=((1,1,-1),(2,0,3),(3,-1,2)),B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3,-4),(2,0,-2,1)] prove that (AB)C=A(BC)