Home
Class 12
MATHS
Let P = [a(ij)] be a 3xx3 matrix and l...

Let `P = [a_(ij)] ` be a `3xx3 ` matrix and let Q = `[b_(ij)] ` , where `b_(ij) = 2^(i+j)a_(ij) ` for ` 1 le I , j le 3 . ` If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

A

`2^(11)`

B

`2^(12)`

C

`2^(13)`

D

`2^(10)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `abs(Q) = abs((2^(2) a_(11) ,2^(3)a_(12), 2^(4) a_(13)),(2^(3)a_(21),2^(4)a_(22),2^(5) a_(23) ),(2^(4)a_(31),2^(5)a_(32),2^(6)a_(33)))`
` =2^(2) cdot 2^(3)cdot2^(4) abs(( a_(11) ,a_(12), a_(13)),(2a_(21),2a_(22),2 a_(23) ),(2^(2)a_(31),2^(2)a_(32),2^(2)a_(33)))`
` =2^(9) cdot 2cdot2^(2) abs(( a_(11) ,a_(12), a_(13)),(a_(21),a_(22), a_(23) ),(a_(31),a_(32),a_(33))) = 2^(12) abs(P)`
`therefore abs(Q)=2^(12)xx2=2^(13)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .

Construct a 2 xx 2 matrix A=[a_(ij)] , whose elements are given by a_(ij)= (i)/(j)

Construct a 3 xx 4 matrix, A = [a_(ij)] whose elements are given by: (ii) a_(ij) = 2i - j

Construct a 3 xx 4 matrix, A = [a_(ij)] whose elements are given by: (i) a_(ij) = 1/2|-3i + j|

Construct a 2 xx 2 matrix, A = [a_(ij)] , whose elements are given by: (ii) a_(ij) = i/j .

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Construct a 2xx3 matrix A = [a_ij], whose elements are given by a_(ij) =(i+2j)^(2)/2

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Construct a 2xx3 matrix A=[a_(ij)] , whose elements are given by a_(ij) =(1)/(2)|2i-3j| .

Construct a 2 xx 2 matrix A = |a_(ij)| whose elements are given by a_(ij) = 2i + j .